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Abstract

The use of indirect calorimetry is strongly recommmended to guide nutrition therapy in critically ill patients, preventing the
detrimental effects of under- and overfeeding. However, the course of energy expenditure is complex, and clinical studies on
indirect calorimetry during critical illness and convalescence are scarce. Energy expenditure is influenced by many individual
and iatrogenic factors and different metabolic phases of critical illness and convalescence. In the first days, energy production
from endogenous sources appears to be increased due to a catabolic state and is likely near-sufficient to meet energy
requirements. Full nutrition support in this phase may lead to overfeeding as exogenous nutrition cannot abolish this
endogenous energy production, and mitochondria are unable to process the excess substrate. However, energy expenditure
is reported to increase hereafter and is still shown to be elevated 3 weeks after ICU admission, when endogenous energy

unit (ICU), Metabolism

production is reduced, and exogenous nutrition support is indispensable. Indirect calorimetry is the gold standard for
bedside calculation of energy expenditure. However, the superiority of IC-guided nutritional therapy has not yet been
unequivocally proven in clinical trials and many practical aspects and pitfalls should be taken into account when measuring
energy expenditure in critically ill patients. Furthermore, the contribution of endogenously produced energy cannot be
measured. Nevertheless, routine use of indirect calorimetry to aid personalized nutrition has strong potential to improve
nutritional status and consequently, the long-term outcome of critically ill patients.
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Background

The optimal quantity and timing of nutrition support for
critically ill patients has long been debated. In the past,
nutrition guidelines supported early aggressive feeding
to meet estimated energy expenditure (EE), aimed at the
prevention of malnutrition and muscle loss. However,
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clinical studies have failed to prove an unequivocal bene-
fit of early high-dose nutrition support, and several pro-
spective randomized clinical trials showed significant
harm, including increased hyperglycemia, hepatic steato-
sis, and mortality [1-5]. In contrast, undernourishment
is also common in ICU and post-ICU patients due to
both prescription inadequacy and failure to reach the
nutrition target [6—12]. A negative energy balance in
critically ill patients is associated with increased morbid-
ity, including increased length of hospital stay, infec-
tions, organ failure, prolonged mechanical ventilation,
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and even mortality [2, 13]. Although there is a clear un-
derstanding that over- and underfeeding are associated
with worse outcome, optimization of nutrition support
is impeded by a lack of insight into the variable nutri-
tional needs of critically ill patients during ICU stay and
convalescence, both on a group and individual level [1,
8, 14]. The available evidence indicates numerous factors
that may lead to significant daily variations in EE in and
between critically ill patients [1, 15, 16]. Therefore, indi-
vidualized real-time nutrition therapy is the next step to-
ward optimal patientcare [1, 15, 17-21]. Indirect
calorimetry (IC) is considered the gold standard to
measure caloric needs in critically ill patients at bedside,
and its use has been strongly recommended by the re-
cent European Society for Clinical Nutrition and Metab-
olism (ESPEN) and American Society for Parenteral and
Enteral Nutrition (ASPEN) guidelines [1, 16, 18, 22].

This narrative review aims to provide a detailed sum-
mary of current evidence on the course of energy ex-
penditure and the use of IC in critically ill patients in
the ICU and during the post-ICU hospital stay. We in-
clude practical aspects of the use of IC and implications
for nutrition therapy.

Energy expenditure

Total energy expenditure (TEE) is defined as the total
amount of energy humans need to function. TEE can be
subdivided into basal energy expenditure (BEE, or basal
metabolic rate; BMR), diet-induced thermogenesis (DIT,
or thermic effect of feeding; TEF), and physical activity-
related energy expenditure (AEE). BEE and DIT com-
bined, represent the resting energy expenditure (REE, or
resting metabolic rate; RMR), which is defined as all en-
ergy requirements involved in the body’s basal
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metabolism to maintain vital functions while inactive
(Fig. 1) [23-25]. REE can be measured by IC and in sed-
entary, healthy subjects, accounts for about two-thirds of
TEE [23]. In critically ill patients, REE will closely reflect
TEE because of minimal physical activity 8, 19].

Energy expenditure during critical illness
Metabolic response to critical illness is complex and has
been a subject of research and debate for decades [26].

Historical concepts

In 1942, Sir Cuthbertson, described the metabolic re-
sponse to traumatic stress as occurring in an ebb phase
and a flow phase (Fig. 2) [26, 27]. The ebb phase lasted
minutes to hours after the initial insult and was thought
to be characterized by a decline in body temperature
and oxygen consumption, aimed at reducing posttrau-
matic energy depletion [26]. After this brief phase of
hypometabolism, Sir Cuthbertson and others recognized
a significant increase, or “flow,” in metabolism, called
traumatic inflammation, or hypermetabolism [28-31].
Hypermetabolism was thought to result from persistent
catabolism, the systemic breakdown of lean tissue mass,
and a rise in O, consumption to produce endogenous
energy substrates to meet the high energy requirements
during critical illness [1, 2]. This increased catabolism
leads to depletion of lean body mass, a syndrome which
has been referred to as “autocannibalism” and feedings
strategies were aimed at halting this process by satistying
the metabolic flow with substrate. The hypermetabolic
phase was thought to end when the healing process
began, with metabolism then reverting to the anabolic
state [32].
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Fig. 1 Components of energy expenditure
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Fig. 2 Progressing concepts of energy expenditure in critical illness. a Historical concept of energy expenditure in critical illness. b Current
understanding of energy expenditure in critical illness and the contribution of various energy sources

Current understanding

Cuthbertson’s theory is still frequently cited; however,
clinical trials have failed to identify a clear course of en-
ergy expenditure in all critically ill patients [33]. In
addition, early aggressive feeding strategies have not had
the desired and expected effect. The reality appears
more complex and omnifarious than the theory.

The described ebb phase has not been clearly identi-
fied in vivo, and its clinical relevance is debatable be-
cause of its briefness. Besides, there is usually, and
logically, an emphasis on hemodynamic, rather than
metabolic stabilization and nutrition support during this
phase of critical illness [34]. In line with the flow theory,
it is known that the release of catabolic hormones such
as norepinephrine, cortisol, and glucagon increases glu-
coneogenesis, glycogenolysis, mobilization of free fatty
acids, and muscle proteolysis in the acute phase of crit-
ical illness [2, 17, 35, 36]. In addition, increased metabol-
ism has been shown in several diseases, although
patterns are highly variable, and the degree of increase
from normal REE may reflect the severity of the meta-
bolic response to the injury [1]. However,

hypermetabolism does not always characterize the initial
phase of critical illness, as several studies show that dur-
ing the first days, oxygen consumption can fall to near-
baseline levels [37-39] (Fig. 2). This phenomenon is hy-
pothesized to be the result of a decrease in mitochon-
drial function as an adaptive strategy of metabolic
hibernation to prevent cell death by energy substrate
overloading at a time when mitochondria cannot keep
up with energy demand [40]. In patients with sepsis, a
reduced oxygen utilization by 22-42% was found, com-
pared with healthy volunteers [41]. A higher REE in se-
vere sepsis patients has been associated with higher
mortality, further adding to the notion that the meta-
bolic downregulation might be sometimes adaptive ra-
ther than a sign of malfunction [42].

Regardless of the rate of metabolism, some unique
metabolic changes occur in the acute phase of critical ill-
ness, which helps explain the counterintuitive effects of
early aggressive feeding. As metabolism is decreased,
and catabolism has the upper hand, exogenous nutrient
and insulin administration have been shown not to abol-
ish endogenous glucose production [18, 43]. Therefore,
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the endogenous energy production is likely near suffi-
cient to meet energy demand during this phase [30, 44].
As a result, full nutrition support may result in overfeed-
ing [15, 17, 18]. To reflect this, current nutrition guide-
lines recommend a gradual increase in caloric intake
during the first 3-5days after ICU admission to avoid
overfeeding [18, 22].

After several days, REE increases again, and as en-
dogenous energy production is simultaneously reduced,
the risk of underfeeding increases [15, 45, 46]. This
might be considered the chronic metabolic phase of crit-
ical illness. An increase in REE has been demonstrated
in both surgical and medical ICU patients, and a max-
imum REE is found around the ninth or tenth day after
ICU admission [34, 38, 47-49]. Clinical data on the
course of EE during the recovery or convalescence phase
of critical illness is scarce and usually derived from stud-
ies with small sample size. When available, measured
REE is still significantly elevated several weeks after ICU
admission, as has been shown in burns, trauma, and sep-
sis patients, including very recently in COVID-19 [50-
52]. However, in serial measurements in twelve patients
during the post-ICU hospitalization period, Ridley et al.
showed significant individual variability in measured EE
[11]. During this phase, TEE is likely to once again in-
crease above REE, due to increased physical and mental
activity, as the focus of treatment is moved toward re-
habilitation. Ideally, the patient enters a recovery phase
with enhanced anabolism, requiring more substrate. In
contrast, the persistent inflammation, immunosuppres-
sion, and catabolism syndrome (PICS) may arise in some
[9, 18, 28]. Metabolically, PICS is characterized by a per-
sistent catabolic state and hormonal disruption leading
to anabolic resistance and inflammation-induced cach-
exia [53].

Thus, different metabolic phenotypes arguably require
a different and individualized nutritional approach. In
addition, many individual and iatrogenic factors might
cause metabolic requirements to be highly variable
among patients as well as over time, making them hard
to predict [1, 51, 54]. Although they are not the same,
regularly measured REE could be a useful proxy for real-

Table 1 Factors affecting energy expenditure in critical illness
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time energy requirement in this vulnerable group of
patients.

Table 1 summarizes factors influencing energy ex-
penditure, including specifics of the underlying disease
and its treatment, anthropometrics, nutritional status,
(in)activity, and environment during and after critical
illness.

Indirect calorimetry

If and when the transition into different metabolic phases
occurs in individual patients, it is still unidentifiable in
clinical practice. Because of not only the high variability
between patients, but also during the disease in the indi-
vidual patient, regular measurements of EE by IC could
provide a better target for nutrition therapy in the subse-
quent phases of disease and convalescence [17, 23].

Indirect calorimetry in theory

IC measures respiratory gas exchange to estimate energy
metabolism. On a cellular level, metabolism entails the
production of adenosine triphosphate (ATP), with car-
bon dioxide (CO,) and water as by-products, by con-
suming oxygen (O,) and burning substrates such as
glucose, free fatty acids, and amino acids. As the energy
produced equals the energy consumed, IC measuring O,
consumption and CO, production represents real-time
energy metabolism [24, 30]. Direct calorimetry, in con-
trast, measures heat production and, therefore, energy
production directly, but this method is not feasible in
clinical practice, as it requires the patients to be mea-
sured inside an insulated chamber [23, 24].

IC determines REE by measuring oxygen consumption
(VO,, in L/min) and carbon dioxide production (VCO,,
in L/min) and subsequently calculates REE according to
the adjusted Weir’s equation, based on the caloric values
of the oxidation of 1L of O, metabolizing a fat and
carbohydrate mixture [25, 56]. The original Weir equa-
tion includes urinary nitrogen measurement content
representing protein oxidation. However, IC uses an ad-
justed version based on the Haldane transformation,
which assumes that nitrogen is physiologically inert, and
therefore, the volume of inspired nitrogen must equal

1 Energy expenditure

| Energy expenditure

m Caucasian ethnicity

m Overfeeding

m Physical exercise, agitation

m 1 Minute volume

m Hyperthermia

m Hyperthyroidism

m Metabolic acidosis

m Stress (cortisol, glucagon, norepinephrine)
m Systemic inflammation, sepsis

m Burns

m Female sex

m Older age

m | Lean body mass

m Prolonged fasting, underfeeding

m Paralysis, coma

m | Minute volume

m Hypothermia

m Hypothyroidism

m Metabolic alkalosis

m Medication: B-blockers, sedatives, muscle relaxants

Adapted from [1, 8, 19, 25, 55]. Symbols: 1, increase(d); |, decrease(d)
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the volume of expired nitrogen. This adjustment ex-
cludes the need for urinary measurements, which im-
proves feasibility and introduces only a small error up to
1-2% occurs in final REE calculation [24, 25, 30, 57].

REE (kcal/day) = 1.44 x ([VO, (mL/ min) X 3.94] + [VCO, (mL/ min) x 1.11])

Furthermore, IC calculates a respiratory quotient (RQ)
during measurement, i.e., the CO,-production to O,-
consumption ratio [19, 25]:

RQ = VCO,/VO,

The RQ is an indicator of the composition of substrate
use. It indicates which macronutrients are being metabo-
lized, as different energy pathways are used. A human
RQ of 1.0, 0.8, and 0.7 represents glucose, protein, and
fat oxidation, respectively [23, 25, 30, 58]. The physio-
logical range of the RQ is 0.67-1.3; therefore, it can also
be used as a quality indicator of the measurement ad-
equacy [59-61]. The approximate respiratory quotient of
a mixed oral diet is 0.8.

Indirect calorimetry devices
IC measurements can be performed by using the ventila-
tion circuit in mechanically ventilated patients for gas
sampling, or by using a canopy hood or face mask in
spontaneously breathing patients to analyze their in- and
expired air (Figs. 3, 4) [19].

Many different devices are available [28]. The Delta-
trac® (Datex, Finland) was the most validated metabolic
monitor and frequently used until sales were discontin-
ued [62—-64]. Several other devices have made it to the
market, each with its limitations. The Quark RMR®
(Cosmed, Italy), E-COVX® (Datex-Ohmeda, Finland),
CCM Express® (Medgraphics, USA), and Vmax® (Vyaire,
USA) were shown to be equal or inferior to the Deltatrac
on several aspects (Table 2) [16, 64—67]. In addition to
these stand-alone devices, some mechanical ventilators
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have integrated IC functions, but its use has not yet been
validated [63]. Lastly, some devices are small, and hand-
held, such as the Fitmate® (Cosmed, Italy) or MedGem®
(Microlife, USA), but have not been validated in critic-
ally ill patients [1, 11, 65]. In order to overcome all dis-
advantages of the devices mentioned above. The Q-
NRG® (Cosmed, Italy) has been developed by a task force
of medical experts from the European Society of Inten-
sive Care Medicine in the international calorimetry study
initiative (ICALIC) project. It is the only device tested
against mass spectrometry for accuracy during inspired
fraction of oxygen (FiO,)—settings ranging from 0.21 to
0.70 and can be used in both mechanically ventilated
and spontaneously breathing patients [16, 19, 62, 68].

Obtaining reliable results

Even with an accurate device, many aspects have to be
taken into account to ensure a reliable measurement
and a valid interpretation of the results, especially when
they consequently lead to an adjustment in nutrition
therapy. Because an IC measurement is always a snap-
shot representation of a continuously changing meta-
bolic state, it is essential to ensure as much of a steady
state as possible and practical during the measurement
procedure, so that momentary changes in the patient’s
condition do not overly influence the interpretation of
the baseline EE [7, 30, 69]. Furthermore, several condi-
tions potentially influence the measurement itself by al-
tering the gas flow [25].

Steady-state measurement
Many situations influence a patient’s steady-state (Table
1), and a patient should ideally not experience mental or
physical stress, be physically active, or be fed shortly pre-
ceding or during the measurement [19]. We discuss sev-
eral points of attention when performing IC in the
intensive care setting.

The use of organ support devices for continuous renal
replacement therapy (CRRT) and extracorporeal mem-
brane oxygenation (ECMO) are everyday in the ICU

Fig. 3 Insertion of a disposable flowmeter into the patient circuit of a mechanic-ventilation system (QNRG®, Cosmed, ltaly)
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Fig. 4 Use of a flow-dilution canopy hood to measure gas exchange in a spontaneously breathing patient (QNRG®, Cosmed, ltaly)

setting. The influence of CRRT on REE is controver-
sial [1, 70]. Theoretically, heparin-CRRT influences
VCO, measurements because an individual, unknown
amount of CO,, is influenced by exogenous bicarbon-
ate administration. It may thereby alter the outcome
of IC measurement, although others reported that this
difference might not be significant [1, 23, 71]. Con-
tinuous venovenous hemofiltration (CVVH) using cit-
rate anticoagulation in the predilution mode, might
affect REE in three ways. O, and CO, are exchanged
in the CRRT circuit, theoretically affecting the Weir
formula. Additionally, CRRT induces heat loss and

immunologic activation. Lastly, calorie-containing
molecules are exchanged within the filter, in addition
to citrate itself [65]. The most recent study by
Jonckheer et al. [72] in 10 critically ill ventilated pa-
tients treated with CVVH found that CO, alterations
due to CVVH are of no clinical importance, so no
correction factor for REE is needed with or without
CVVH. In contrast with previous recommendations
suggesting initiation of IC only several hours after
cessation of CVVH, Jonckheer et al. recommend per-
forming IC measurements during CVVH, as CVVH
does not seem to alter metabolism.

Table 2 Overview of comparative studies of IC devices in mechanically ventilated patients [16, 64-67]

Q-NRG®

Deltatrac®

Deltatrac® (Datex, - (No) significant difference in

Finland) measured REE [16]
- Measurements using Q-NRG® signifi-
cantly faster [16]
QUARK RMR® - Significant difference in measured

(Cosmed, Italy) REE (p = 0.038)

- No significant difference in mean REE (p = 0.166)
- No significant differences EE, VCO,, and VO, [66]

- Measurements using Q-NRG® signifi- - Significant difference in RQ (p < 0.0001) not favoring Deltatrac®, due to

cantly faster [16]

measurement values outside the physiological range [60]

- Overestimation of VO, and VCO, by QUARK RMR® [67]

Vmax® (Vyaire, USA) - Significant difference in measured
REE (p < 0.001)
- Measurements using Q-NRG® signifi-

cantly faster [16]

E-COVX® (Datex-
Ohmeda, Finland)

- No significant difference in
measured REE (p = 0.165)

- No significant difference in the
duration of measurement

CCM Express®
(Medgraphics, USA)

- No significant difference in REE (p = 0.8) is not reliable enough in a clinical
research setting [65]

- Overestimation of VO, and VCO, by E-COVX® [67]

- Significant difference in mean REE (p < 0.0001)
- Significant difference in RQ (p < 0.0001)

- Significant differences in RQ and VO, and VCO, (p < 0.0001) [66]
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So far, guidelines lack specific recommendations on
nutrition support for ECMO patients. Retrospective data
show that underfeeding during ECMO is still prevalent,
mainly due to interruptions and poor gastric motility
[73]. Additionally, ECMO delivers O, in addition to re-
moving CO,, making reliable IC calculation and inter-
pretation even more complicated [19]. De Waele et al.
[74] proposed to insert consecutively obtained, individ-
ual IC measurements of the native and the artificial lung
in the adjusted Weir equation to retrieve a measured
REE composite as follows:

REEcomposite = 1.44% ([3.94 X VOaotal] + [1.11 X VCOatotal])

With VOaotat = VOanative lung t VOsecmo
With VOanative lung = VE x [FiOZ_FiOZ]
And VOzecmo = [Fiozeemo x VIgemol-[Feozecmo
x VEgcmol
And VCOqotat = VCOanative lung + VCOsecmo
With VCOZnative lung = [FeCOZ X VEnative lung]_
[FiCO2 X VEnative lung]
And VCOyecmo = [Fecozecmo * VEeemol-
[Ficozecmo % VEecmo)

Wollersheim et al. [75] propose a similar equation
combining traditional IC measurements of the native
lung with calculations based on pre-membrane and
post-membrane oxygenator blood gas analyses allowing
for simultaneous measurements of lung and ECMO
device.

VOarcmo = [O28Gapost = O28GApre
x ECMO blood flow

VCOsecmo = [CO28Gapre — CO2BGApost
x ECMO blood flow

However, these small studies’ results require further
validation in a larger ECMO patient cohort with differ-
ent gas flow management [76].

At least 30-60 min preceding IC measurement, no
medication alterations should be carried out [8, 63]. Sed-
atives and analgesics may cause reductions in VO, and
REE [4, 13]. Neuromuscular blocking agents also affect
the EE, although the effect is small [8, 24, 28, 77, 78]. A
recent study with continuous infusion of cisatracurium
showed a significant reduction in EE measured with the
VCO, method, although the clinical relevance is pre-
sumed to be minor, and in most patients no reductions
in caloric prescription are necessary [78]. Furthermore,
the administration of vasopressors increases REE,
whereas specific p-blockers are contradictory reported to
decrease REE [8, 35, 77, 79]. However, the effect of low-
dose cardio-specific p-blockers is negligible [75].
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Consequently, IC measurements should be repeated as
significant dose changes regarding levels of sedation or
hemodynamic support are made [24].

From a mechanistic point of view, patients receiving
bolus nutrition or orally fed patients should be fasted for
at least 5h before performing IC to obtain a stable
measurement [63, 80]. However, this is often undesirable
and unfeasible in clinical ICU practice [11, 63, 80]. In
the case of continuous (par)enteral feeding, DIT has
minimal effect on IC, if the infusion rate is not altered 1
h before or during measurement [8, 28].

Physical activity, including all body movements related
to stress, such as agitation, seizures, shivering, invasive
procedures, and unstable analgesia or sedation, can alter
EE [19, 81]. Ideally, a patient should rest up to 20 min
before IC takes place [76]. As this is often difficult, if not
impossible to achieve in the ICU setting, these condi-
tions may introduce error into the measurement if they
do not resemble the patient’s steady state. Physiotherapy
or active mobilization should be avoided 2 h before mea-
surements. Endotracheal tube suction should be avoided
within 20 min before and during measurements [63].
Ventilator settings should not be changed for 60 to 120
min before or during the IC measurement, as the patient
needs to adjust to the new settings and therefore, might
not be completely stable and at rest [8, 28, 77].

Body temperature variations of more than 1°C before
IC measurement, make results less reliable [28, 68, 78].
Some authors report an increase in REE caused by fever,
whereas therapeutic hypothermia is associated with a de-
crease in REE; however, not all studies report similar
findings [81].

Gas collection

The ventilation mode may unjustly influence measured
EE by directly affecting the measured gas flow used for
calculation [15, 82, 83]. As the device uses the amount
of inspired and expired N, as a control to define the
amount of inspired and expired oxygen and carbon diox-
ide, the amount of N, will be too low to get a reliable re-
sult, when the fraction of inspired oxygen is too high.
Patients with an FiO, > 0.6 cannot be measured accur-
ately by most devices, although the Q-NRG can measure
REE in mechanically ventilated patients with a FiO, up
to 0.7 [6, 28, 63]. Consequently, the use of nitric oxide
also influences IC measurements [1, 23, 28]. Moreover,
fast respiratory rates (>35/min) lead to difficulty in the
gas analysis [23, 30]. Patients with unspecified amounts
of air leakage, such as an uncuffed tracheostomy can-
nula, endotracheal tube cuff leaks, tracheal-esophageal
fistulae, subcutaneous emphysema, or chest tube drain-
ages should be excluded from IC measurements, as the
gas collection is unreliable [8, 19, 23]. Additionally, an
error could be induced by air leakage, instable FiO, or
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expiratory flow, compressed volume, and air trapping in
patients with high positive end-expiratory pressure, i.e.,
PEEP> 10 cmH,0. Lastly, although the use of a canopy
or hood makes measurements possible in spontaneously
breathing patients with or without non-invasive ventila-
tion, supplemental O, cannot be adequately measured
or incorporated into the equations [1, 84].

Although the precautions mentioned earlier aim to en-
sure a measured EE that reflects real caloric need as
closely as possible, it is essential to realize that IC, unless
performed continuously, always extrapolates measure-
ments obtained from a short period and therefore never
fully accounts for the variation of EE during 24 h [85].
IC measurements should ideally be repeated every 2 to
3 days if feasible and whenever a patient’s clinical condi-
tion or treatment changes significantly, thereby possibly
influencing EE [17, 19, 86-88].

Practical considerations

No standardized protocol for performing IC is available
[7]. However, it stands to reason that the metabolic
monitor should be calibrated, connected, and operated
correctly, and the technical ranges of the specific device
should not be exceeded [54, 63]. IC devices are not re-
sistant to moisture, and therefore, humidity in the circuit
connected to the mechanical ventilator should be pre-
vented as much as possible by the use of the correct fil-
ters, pointing all sample lines upwards, postponing
nebulization until after the measurement, and perform-
ing timely endotracheal suctioning (although as men-
tioned before, not within 20 min before measurement, to
avoid agitation) [23].

A period of gas exchange in which VO, and VCO,
vary by less than 5% over 5min or 10% over 10 min
should be chosen for calculations, although newer de-
vices may do this automatically [8, 25, 80]. Measuring
EE in spontaneously breathing and conscious patients
could bring difficulties in accepting a canopy hood or
face mask because of agitation, claustrophobia, or nausea
[1, 61].

IC devices use various disposables at the patient circuit
designed for one-time use only, such as flowmeters, fil-
ters, adapters, and sampling lines or, alternatively, a can-
opy hood, to ensure maximum hygiene. The device itself
should be completely disinfected after each use. Never-
theless, connection of the IC device to a ventilation cir-
cuit requires a brief disconnection of the circuit,
resulting in the release of aerosols. Therefore, care
should be taken that connection of an IC device to the
ventilation circuit of a patient with a disease that is
transmittable through aerosols, such as COVID-19, is
performed by personnel wearing protective garments
and, when possible, takes place in a negative pressure
room. Some guidelines advise against the use of IC in
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COVID-19 patients owing to potential aerosol exposure
and therefore infection risk to healthcare providers [89],
although others emphasize its value and offer practical
guidelines to ensure optimal safety [90].

Alternatives to indirect calorimetry

Several alternatives are used in research and clinical
practice to estimate EE in situations where IC is not
available or feasible.

Predictive equations to estimate energy expenditure
Predictive equations estimate a patient’s energy expend-
iture using anthropometry and vital parameters to esti-
mate EE. All equations are unreliable, as EE is affected
by many individual factors unaccounted for in the for-
mulas [1, 7, 19, 31, 55, 91-95]. When comparing the re-
sults of predictive equations to those of IC, many
discrepancies are found [18]. Consequently, the use of
predictive equations alone is likely to lead to under- and
overfeeding [51]. Nutritional guidelines discourage the
use of these equations and advise never to administer
more than 70% of the caloric need calculated based on
these equations during the first week of ICU stay to pre-
vent overfeeding [18, 22].

Ventilator VCO, to estimate energy expenditure

Methods to calculate energy expenditure (EE) based on
CO, measurements (from the mechanical ventilator, or
the pulmonary arterial catheter) have been proposed as
a surrogate to IC. The EEVCO,-method uses VCO, ob-
tained from the mechanical ventilator or pulmonary ar-
tery catheter and a fixed RQ value of 0.86 to substitute
VO,, for mechanically ventilated critically ill patients
based on the enteral nutritional products most used in
the ICU setting [96]:

RQ = VCO,/VO,
VO, = VCO,/RQ, with RQ = 0.86

The Weir’s equation is then adjusted as follows [18,
96]:

EEVCO, (kcal/day) = 1.44 x (3.941 x [VCO,(mL/min)/
0.86] + 1.11 x VCO,(mL/ min )), simplified:

EEVCO; (kcal/day) = VCO, (mL/ min) x 8.19

Still, the use of a fixed RQ may lead to inaccuracies
because of fluctuating substrate use. Applying the food
quotient (FQ), or nutritional RQ, instead, may, in part,
solve this inaccuracy [19, 30]. The approach assumes
that the RQ value is equal to the FQ, i.e., the estimated
RQs resulting from the oxidation of different energy
substrates from nutrition therapy and non-nutritional
calorie sources. The RQ is 1.0, 0.7, and 0.8 for
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carbohydrates, fat, and protein, respectively, enabling
calculation of an individual FQ based on the compos-
ition of the administered energy sources (both nutritious
and non-nutritious):

FQ = [fat% x 0.7] + [protein% x 0.8]
+ [carbohydrates% x 1.0]

Whenever relevant, other energy sources with different
RQs can be added to the formula, such as in the case of
citrate CVVH, where RQjiate = 1.33. Subsequently, the
estimated RQ in the adjusted Weir's equation is
substituted for the calculated FQ. Nevertheless, the use
of the FQs may be considered unreliable in patients in a
catabolic state, as endogenous substrate utilization can-
not be estimated by intake. In addition, the EEVCO,
method has consistently been shown to be inferior to IC
[97, 98]. However, the technique has been proven to be
more accurate than predictive equations [18, 91, 96].

IC-guided nutrition

Despite guideline recommendations to use IC in critic-
ally ill patients, the superiority of IC-guided nutritional
therapy has not yet been unequivocally proven in ran-
domized clinical trials [15, 86, 99]. Even though it was
confirmed that IC-guided nutrition support improves a
patient’s nutritional status, the only significant benefit to
outcome proven by RCTs is a significant decrease of
nosocomial infections [46, 100—102]. Controversy exists
concerning its effect on morbidity, mortality, and the
length of hospital stay [18].

Associations with clinical outcome

The pilot Tight Calorie Control Study (TICACOS) [29]
suggested a 60-day mortality improvement in patients
receiving higher caloric IC-guided nutrition than stand-
ard care, despite an increased length of ventilation and
ICU-stay seen in this group. The subsequent TICACOS
international study [103] showed that the use of an IC-
guided nutritional goal yielded higher energy and protein
delivery, compared with a nutritional goal based on pre-
dictive equations, with a trend toward lower mortality.
However, overall results were insignificant. Covering
100% of repeated IC-derived REE from the first day of
ICU in the EAT-ICU trial [104] did not affect the phys-
ical quality of life, infectious complications, or mortality
at 6 months as compared to standard nutrition.

There are several possible explanations for these dis-
crepancies. In the EAT-ICU trial, the defined nutritional
goal of both protein and calories was largely met; how-
ever, the target was set only according to a median of
two measurements per patient. For some patients, this
meant that energy prescriptions were stationary after
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extubation, possibly underfeeding some at this stage.
Conversely, aiming at covering 100% of measured REE
in the early phase might have conferred overfeeding by
exogenous nutrient overload in a phase when the en-
dogenous substrate is mostly sufficient to meet REE.
Zusman et al. [14] describe a U-shaped curve correlation
between the percentage of calories delivered compared
to measured EE and mortality in ICU patients, where
both under- and overfeeding have harmful effects, and
the beneficial effect lies in the middle of the curve.
Therefore, caloric outliers on opposing sides of the curve
might dilute any significant beneficial results. These ob-
servations further underline the need for studies ad-
dressing the effect of personalized IC-guided nutrition
therapy based on repeat measurements, continued
through various metabolic phases of illness and
convalescence.

The question remains whether calories delivered to
patients during the acute phase of their critical illness
should match measured or estimated EE despite the on-
going endogenous nutrient release, which is not sup-
pressed by feeding and remains immeasurable [85].
Furthermore, the effect of non-nutritional calories, in-
cluding propofol, glucose, and citrate, should be taken
into account when determining the target exogenous en-
ergy dosage [17]. Nutrition guidelines recommend to
gradually advance to target during the first week, not
meeting REE before the first 48 h to avoid overfeeding
(18, 22].

An additional complexity in the interpretation of nu-
tritional trials is the varied amount of protein delivered.
The TITACOS studies were not protein targeted, and
the amount of protein was determined by the rate of EN
or parenteral nutrition provided. This resulted in pa-
tients receiving protein below the recommended levels.
Current nutritional theory hypothesizes that not the cal-
oric value, but the amount and timing of protein pro-
vided is most essential to influence the course of the
disease, although the effect might not be the same in all
types of critical illness [18, 105-108]. Therefore, results
might reflect caloric overfeeding, early protein overdos-
ing, late protein underfeeding, or a combination of these
aspects. Future research should address the optimal tim-
ing and dosing of protein and calories individually.

Respiratory quotient

Aside from energy expenditure, the IC derived RQ pro-
vides several theoretical applications, as the RQ indicates
which macronutrients is mainly being metabolized. Un-
derfeeding, which promote the use of endogenous fat
stores, decreases the RQ, whereas carbohydrate metabol-
ism increases RQ. However, studies in both adult ICU
and pediatric burn patients found low sensitivity and
specificity of IC derived RQ as an indicator of over- or
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underfeeding [60, 109]. Nevertheless, McClave et al. did
show that increases in RQ correlated to increasing re-
spiratory rate and decreasing tidal volume, suggesting
that patients developed shallow, rapid respirations in re-
sponse to increases in the measured overall RQ. Indeed
lowering dietary fat guided by RQ can decrease VCO,
and thereby breathing effort in patients with obstructive
lung disease, although the applications in the ICU set-
ting are limited. More recently, several smaller studies
found a correlation between (course of) RQ and out-
come in critically ill patients, suggesting a potential
prognostic use of RQ [110, 111]. Nevertheless, even if
these patterns of substrate utilization could be reliably
identified in larger populations, it remains unclear
whether they can and should be influenced to improve
outcome. Due to paucity of guiding evidence, it is cur-
rently advised that the clinical use of RQ is restricted to
a marker of test validity to confirm measured RQ values
are in physiologic range, and perhaps a rough estimation
of respiratory tolerance of feeding [60].

All taken into account, the association of IC use with
important clinical outcomes needs to be further ex-
plored before definitive conclusions about its use in the
intensive care unit can be drawn. A recent systematic re-
view and meta-analysis by Tatucu-Babet et al. [99] iden-
tified 4060 articles on the effect of IC-guided nutrition
and clinical outcomes and found only 4 single-center,
randomized controlled trials with 396 patients included
in the analysis. All 4 studies reported higher receipt of
energy close to the measured energy expenditure by IC
compared to the predictive equation arm. However,
when combined, no association between IC-guided en-
ergy delivery and hospital mortality was found, leading
the authors to conclude that it is yet too early for wide-
spread implementation of IC in clinical practice.

Convalescence

No formal guidelines on calories and protein intake are
available for the convalescence phase of critical illness.
However, as patients likely enter a more physically active
and anabolic phase with an increased TEE, it is assumed
that a significant protein and calorie delivery is necessary
to restore muscle mass and quality of life [17, 50]. Fur-
thermore, studies imply that nutrition delivery largely
fails to reach nutritional goals in the post-ICU
hospitalization phase, although very few studies set goals
according to regular IC measurements [11]. Recent
retrospective data shows that PICS patients are prone to
worse long-term outcomes and lower survival when fed
with current evidence-based protocol nutrition [53]. It
has been suggested that high levels of protein, amino
acids, and anabolic adjuncts such as insulin, might aid in
overcoming anabolic resistance in PICS. This is primar-
ily extrapolated from cancer cachexia and burns
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research, and mechanistic studies are lacking [112, 113].
There is an urgent need for prospective studies measur-
ing EE in the recovering critically ill and analyzing actual
nutrition delivery and the effect on long-term outcome
in different metabolic phenotypes.

Conclusions

Energy expenditure appears highly variable among critic-
ally ill patients and in individual patients during various
phases of illness. As a consequence, critically ill patients
are at considerable risk of under- or overfeeding during
ICU and post-ICU hospital stay, when rough and static
estimates are used. The most recent international guide-
lines recommend regular indirect calorimetry to measure
energy expenditure as a proxy for caloric requirement in
ICU patients. However, the superiority of IC-guided nu-
tritional therapy has not yet been unequivocally proven
in randomized clinical trials and further research is ur-
gently warranted. Nevertheless, IC has strong theoretical
potential to improve nutritional status and consequently,
the long-term outcome of critically ill patients in the
various metabolic phases of critical illness. Increased
knowledge of practical use and theoretical benefits of IC
among clinicians can contribute to more widespread and
routine use, thereby promoting research opportunities
and real-time targeted and personalized nutrition
therapy.
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